Filling the Knowledge Gap: Brain Injury Training for Educators
Big Picture Outline

I. Neuroanatomy and neurophysiology
II. Defining Brain Injury
 i. Acquired Brain Injury (ABI) versus Traumatic Brain Injury (TBI)
 ii. Severity of injury classification
 iii. Mechanism of injury
 iv. Primary and secondary injuries
III. Common Sequelae after TBI and trajectory
IV. mTBI (Concussion) – myth versus fact

I. Neuroanatomy and Neurophysiology

THE BASICS
The Brain

- Your brain weighs about 3lbs, or just under 1.5kg
- Your brain is connected to your spinal cord by the brain stem
- Part of CNS
 - It is divided into 3 primary regions:
 - Forebrain (Cerebrum)
 - Midbrain (Middle of brain)
 - Hindbrain
 - (Pons, Medulla oblongata, and cerebellum)
- The cerebral cortex is the largest part of your brain.
 - It contains 4 pairs of lobes: the frontal, the temporal, occipital, and parietal lobes

The Brain

- The skull protects the brain from penetrating injuries
- The meninges contain 3 membranous envelopes that surround the brain and spinal cord
 - Primary function to protect CNS
 - Pia, Arachnoid, and Dura
 - Each have own function
 - Cerebrospinal fluid fills ventricles and the spaces between the Pia and Arachnoid

The Brain
Skull Interior Anatomy
- The interior of the skull where these lobes sit in particular have bony features and protrusions.

The Brain
- The brain is made up of around 100 billion nerve cells and even more support cells, which provide nourishment to the nerve cells.
- Axons are part of the nerve cell:
 - Carries information quickly
 - Myelin are akin to insulation
 - Can be very long

White Matter Tracts

Image modified from "Neurons and glial cells: Figure 2," by OpenStax College, Biology (CC BY 3.0).

Frontal Lobes

- Attention
- Language
- Motivation
- Judgment
- Social behavior
- Emotion Regulation
- Conscious Movement
- Executive Functioning
 - Problem solving
 - Impulse Control
 - Working memory

Temporal Lobes

- Memory
- Language
- Smell
- Auditory processing
- Aggression
- Sexual behavior
- Emotions

- Potential Deficits
 - Difficulty understanding
 - Verbal Problem solving
 - Emotionality
 - Difficulties with emotional
 regulation

Parietal Lobes

- Spatial Awareness
- Perception
- Body awareness with objects and interacting with space

- Potential Deficits
 - Reading
 - Writing
 - Right/Left
 - Difficulties
 - Impaired navigation of environments
 - Impaired sense of touch
 - Difficulty with visual attention

Image downloaded from https://www.picswe.com/find/frontal-lobe-pics-08.html

Image downloaded from http://podemosmadridchamartin.info/parietal#
Occipital Lobes

- Visual processing
- Vision

Potential Deficits
- Visual field cuts
- Word blindness
- Hallucinations
- Inability to recognize movement
- Difficulty reading and writing
- Difficulty identifying colors and locating objects

- Image downloaded from https://www.medicalnewstoday.com/articles/322136.php

Cerebellum

- Balance
- Coordination
- Skilled motor activity
- A little bit of everything
 - Language
 - Executive Functioning
 - Visual-Spatial processing

Brain Stem

- Breathing
- Heart rate
- Arousal/consciousness
- Sleep/wake functions
- Attention/Concentration

- Image downloaded from https://gomerblog.com/2014/12/fearless-neurologist/
Traumatic Brain Injury 101: An overview

PRESENTED BY
DANIELLE M. PLOETZ, PHD
PEDIATRIC NEUROPSYCHOLOGIST

Big Picture Outline

I. Neuroanatomy and neurophysiology
II. Defining Brain Injury
 I. Acquired Brain Injury (ABI) versus Traumatic Brain Injury (TBI)
 II. Severity of injury classification
 III. Mechanism of injury
 IV. Primary and secondary injuries
III. Common Sequelae after TBI and trajectory
IV. mTBI (Concussion) – myth versus fact

II. Defining Brain Injury

I. Acquired Brain Injury (ABI) versus Traumatic Brain Injury (TBI)
II. Severity of injury classification
III. Mechanism of injury
IV. Primary and secondary injuries
Definitions – TBI and ABI

- Traumatic Brain Injury (TBI) is caused by a bump, blow, or jolt to the head or penetrating head injury that disrupts the normal function of the brain.
- An acquired brain injury (ABI) is an injury to the brain, which is not hereditary, congenital, degenerative, or induced by birth trauma. The injury results in a change in neuronal activity, which affects the physical integrity, the metabolic activity, or the functional ability of nerve cells in the brain. It can be considered the umbrella definition for TBI but also includes:
 - Stroke
 - Tumor
 - Anoxia/Hypoxia
 - Infection

ABI is an umbrella term

TBI statistics across the lifespan – CDC 2013

2.8 million/yr injured
2.5 million/yr seek emergency care
282,000/yr are hospitalized
50,000/yr die with TBI
80,000/yr result in long-term disability
5.3 million Americans with TBI disability
Up to 6.5 million Americans with TBI
Leading cause of TBI by age

- **Total incidence between 2006-2010**
- **Motor Vehicle/Traffic**
- **Falls**
- **Assault**
- **Struck by/Against**
- **All other Causes**
- **Unknown**

Mechanism of Injury

- **Penetrating vs. Non-Penetrating "closed" injury**
- **Closed-head injury biomechanics:**
 - Deformation – Direct impact can distort skull injuring underlying brain tissue
 - Contact – moving brain strikes inner surface of skull
 - Rotational – nonlinear & rotational forces cause acceleration or deceleration of brain tissue

Coup-Contrecoup injury

- Image obtained from https://musculoskeletalkey.com/traumatic-brain-injuries/#f9 Figure 20-9
- Image obtained from https://www.injurylawyercanada.com/blog/suffering-from-a-whiplash-injury-you-may-have-a-brain-injury/
Mechanism of Injury

- Inertial forces can result in stretching and breaking (shearing) of brain tissue (axons).
- A complex set of events is set in motion at the cellular & subcellular level, involving release of neurotransmitters.

Pathological effects

- **Primary injury** – Anatomic injuries
 - Occur upon impact and include:
 - Skull fractures
 - Contusions
 - Hematomas
 - Hemorrhages
 - Injury to Axons and blood vessels
- **Secondary injury** – Metabolic injuries
 - Occur following cascade of events after tissue damage or as result of the consequences of mass effect (e.g., hematomas)

Determining Severity

<table>
<thead>
<tr>
<th>Glasgow Coma Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eye opening</td>
</tr>
<tr>
<td>Spontaneous...4</td>
</tr>
<tr>
<td>Spoken...5</td>
</tr>
<tr>
<td>To command...6</td>
</tr>
<tr>
<td>a. localizing...5</td>
</tr>
<tr>
<td>c. Arm flexion...3</td>
</tr>
<tr>
<td>e. No response...1</td>
</tr>
</tbody>
</table>

Total score = E+V+M
Big Picture Outline

I. Neuroanatomy and neurophysiology
II. Defining Brain Injury
 i. Acquired Brain Injury (ABI) versus Traumatic Brain Injury (TBI)
 ii. Severity of injury classification
 iii. Mechanism of injury
 iv. Primary and secondary injuries
III. Common Sequelae after TBI and trajectory
IV. mTBI (Concussion) – myth versus fact
General Patterns of Dysfunction by Location of Injury

<table>
<thead>
<tr>
<th>Right Side of Brain</th>
<th>Left Side of Brain</th>
<th>Diffuse Injury</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impairments in visual-spatial perception</td>
<td>Difficulties in understanding language (receptive language)</td>
<td>Reduced thinking speed</td>
</tr>
<tr>
<td>Left-neglect, or inattention to the left side of space or body</td>
<td>Difficulties in speaking or verbal output (expressive language)</td>
<td>Increased confusion</td>
</tr>
<tr>
<td>Decreased awareness of deficits</td>
<td>Catastrophic reactions (depression, anxiety)</td>
<td>Reduced attention and concentration</td>
</tr>
<tr>
<td>Altered creativity and music perception</td>
<td>Verbal memory deficits</td>
<td>Increased fatigue</td>
</tr>
<tr>
<td>Loss of the gestalt, or “big picture”</td>
<td>Decreased control over right-sided movements</td>
<td>Impaired cognitive functions across all areas</td>
</tr>
<tr>
<td>Visual memory deficits</td>
<td>Impaired logic</td>
<td></td>
</tr>
<tr>
<td>Decreased control over left-sided movements</td>
<td>Sequencing difficulties</td>
<td></td>
</tr>
</tbody>
</table>

No injury is the same

- **Brain injuries are individual and diverse**
 - There are some commonalities but each one is unique
- **Fastest recovery occurs early (i.e., first 6 months) on during the injury**
 - There is continued recovery but it is at a much slower pace

Hypothetical Cognitive Recovery Paths for TBI

TBI in children and adolescents

Functional Impact
- Children are not little adults – the brain is continuing to develop

Example
- At age 5 or 6, supports put in place for all children (general education) may be enough
- In middle or high school, demands and expectations increase. Therefore the same supports may not be enough and struggles the child experiences may be more apparent to others

Factors affecting outcome
- Age at time of injury
- Severity of injury
- Management and following TBI
- Co-occurring medical or developmental conditions
- Pre-injury functioning
- Socioeconomic status
- Family functioning
- Early measures
Sequelae of TBI

- Reminder every injury is unique
- Make sure to have information from a healthcare professional about the individual's strengths and weaknesses.

Physical Changes
- Fatigue
- Seizures
- Coordination
- Swallowing
- Muscle strength, tone, control

Senses
- Hearing
- Vision
- Smell
- Taste

Perceptual Changes
- Unilateral Neglect
- Visual Field Cut
- Spatial Relations
Attention Problems

- An attention deficit might look like trouble paying attention or it might look like...
 - He keeps changing the subject.
 - She doesn't complete tasks.
 - He has a million things going on and none of them ever gets completed (for example...).
 - When she tries to do two things at once she gets confused and upset.

Memory Problems

- A memory deficit might look like trouble remembering or it might look like.....
 - She frequently misses appointments-avoidance, irresponsibility.
 - He says he'll do something but doesn't get around to it.
 - She talks about the same thing or asks the same question over and over-annoying perseveration.
 - He invents plausible sounding answers so you won't know he doesn't remember.

Executive Functioning

- A deficit in executive skills might look like the inability to plan and organize or it might look like...
 - "Uncooperative"
 - "Stubborn"
 - "Lack of follow through"
 - "Laziness"
 - "Irresponsibility"
Emotional Regulation

- Emotional regulation difficulties might look like overreacting or they may look like...
- She cried for no apparent reason.
- He was disproportionately upset when he was told to put his paper away.
- “mismatch between context and emotional display”

In Summary

- A TBI of any severity can result in changes that affect the child’s daily life
- TBI research is ongoing to help provide better information on recovery
 - Currently, research suggests most rapid recovery occurs early after injury
- Every injury is different, every individual is different
 - We need information to help us understand the unique pattern of strengths and difficulties

In Summary

- Finally, TBI in children has added complexity as it affects the brain as it is developing
Big Picture Outline

I. Neuroanatomy and neurophysiology
II. Defining Brain Injury
 i. Acquired Brain Injury (ABI) versus Traumatic Brain Injury (TBI)
 ii. Severity of injury classification
 iii. Mechanism of injury
 iv. Primary and secondary injuries
III. Common Sequelae after TBI and trajectory
IV. Mild (m) TBI (Concussion) – myth versus fact

IV. mTBI (Concussion) – Myth Versus Fact
Severity Classification

Mild
- Head injury
- Glasgow Coma Scale (GCS) 13 - 15
- Post-traumatic Amnesia (PTA) < 24 hours
- Loss of Consciousness (LOC) 0 - 30 min

Myth Versus Fact 1
- mTBI only occurs when there is a loss of consciousness or you get “knocked out”
- mTBIs can occur with or without losing consciousness

Myth Versus Fact 2
- After a concussion, you need to refrain from all activity.
- After a few days rest, there is actually research to suggest
Myth versus Fact 3

- Helmets make you concussion proof
- Helmets are designed to prevent skull fractures, not concussions.

Myth versus Fact 4

- Concussions all resolve in a week.
- Every concussion is different, and each child is different. Some improve in a day or two, but it’s not uncommon for it to take weeks or months to recover from a concussion.

Common Symptoms of Concussion

- Thinking Symptoms: Feeling mentally foggy, Problems concentrating, Problems remembering, Feeling more slowed down

- Emotional Symptoms: Irritability, Sadness, Feeling more emotional, Nervousness

- Sleep Symptoms: Drowsiness, Sleeping more than usual, Sleeping less than usual, Trouble falling asleep

- Preschoolers (Rane et al.)
 - Enuresis
 - Behavioral changes
 - Nightmares
 - Stomachaches
Most reported symptoms

- Headache – number 1 reported symptom
- Nausea
- Dizziness
- Disorientation/Mental status changes
- LOC
- PTA
- Vomiting

Clinical Considerations

Factors that Impact TBI
TBI symptoms can overlap with other conditions

- Headache
- Sensitivity to light or noise
- Vision problems
- Dizziness
- Fatigue
- Insomnia
- Cognitive deficits
- Irritability
- Avoidance
- Flashbacks
- Hypervigilance
- Nightmares
- Tension

Guidelines for management of mTBI

- For mTBI there is a consensus statement (McCrory et al., 2016 and new CDC guidelines published in JAMA Pediatrics September 2018) that provide information on diagnosis and management

Management of mTBI

- Importance for health care professionals to monitor recovery and provide recommendations for:
 - Sleep
 - Return to physical activity
 - Return to cognitive activity
 - Return to school
 - Education about recovery process
Summary

- A concussion is a type of TBI and referred to as a mild TBI
- It is important to know that people experience a range of symptoms and timeline for recovery and return to activities
- Returning to cognitive and physical activity should be done gradually and if necessary under the guidance of professionals
 - Pacing is recommended as tolerated by symptoms
- Research is ongoing
 - To determine ideal duration and intensity of rest AND
 - For recommendations regarding timing of introducing cognitive and physical activity

Upcoming segments

- Educational management of students with TBI
- Things to consider about the special education process
- Best teaching practices
Emotion Regulation Strategies for Educators

Danielle Ploetz, PhD
Pediatric Neuropsychologist
Kennedy Krieger Institute

Strategies Video Series

I. Attention
II. Executive Functioning
III. Emotion Regulation
IV. Memory

Outline

• Define Emotion Regulation
• Strategies to prevent dysregulation
• Strategies to support the student in the moment
• Putting it together - Example
• Summary
Defining Emotion Regulation

- Emotion regulation can be defined as the ability to modulate and regulate your emotional responses.
- Emotion regulation ability is interconnected to the broader domain of executive functioning:
 - Inhibition/Impulse control
- Poor emotional control can be expressed in different ways.

Emotional Regulation

- Emotional regulation difficulties might look like overreacting or they may look like...
- She cried for no apparent reason.
- He was disproportionately upset when he was told to put his paper away.
- "Mismatch between context and emotional display."
- They can go from zero to 100 very quickly with any emotion.

Translating Research to Practice
Disruption to life

- Emotion regulation can be helpful in day to day life
- Disruption to this function can make it difficult to engage in academic and social activities

Managing the triggers?

Using the ABC approach to challenging behavior, we can manage the antecedents, or triggers, to reduce the chances of a behavior occurring.
- Develop a positive rapport
- Establish consistent routines
- Provide rules/education about appropriate ways to communicate
- Involve the person in discussing behavior issues
- Avoid or minimize known triggers
- Use distraction or redirection away from the trigger
- Discuss these triggers with the person
- Know what they are using as possible coping strategies (deep breathing, mindful activity, switching to a preferred activity, etc.)
- Suggest and encourage these strategies when a trigger occurs.

Strategies

- These challenges do not typically occur in isolation
- May be helpful to utilize strategies for other areas that the child may be struggling with for example executive functioning or memory
How do I support my student?

1. Stay calm
2. Allow for time to regroup
3. Hear them out
4. Respond positively and provide feedback/support as warranted
5. Gently redirect them to another activity or topic.

Positive reinforcement

• This is generally the most effective strategy. An incentive is given immediately when a desired behavior occurs. For example, Kevin usually becomes quiet when anxious then suddenly starts shouting at everyone. He is learning to tell family members when he is getting anxious and do his deep breathing exercises. Every time he remembers to do this, his actions are praised.

Positive reinforcement con't

• Positive reinforcement is not bribery - reinforcement comes after a task is completed, bribery is offered before. Try to make sure the reinforcer is practical, ethical and valid for the behavior being targeted. Timing is critical - ensure the positive reinforcement happens immediately after the desired behavior.

• Keep in mind that lengthy "behavioral contracts" may not be appropriate if the individual has problems with working memory or awareness.
Giving feedback

• After a brain injury, a person may become unaware of what is appropriate and inappropriate behavior. They may also have trouble interpreting facial expressions or non-verbal language that others are upset. We need to provide immediate clear verbal feedback on inappropriate behaviors.

Redirection

• Redirection can involve distracting a person when a trigger for behavior occurs, or redirecting them when a behavior is occurring. It is often used for repetitive behaviors such as constantly talking about the same topic. It is often effective when combined with positive reinforcement as well.

Ignoring the behavior

• In some cases, behavior occurs to get attention, so the best strategy may be to ignore it. As with many of these techniques, tactical ignoring is best linked with positive reinforcement. For example, a child is ignored during an angry outburst, but is rewarded with praise, a treat or favorite activity once the outburst is over.
Putting it all together -

Example

- Kevin – a 13 year old young man who sustained a severe TBI about a year ago.
- Kevin gets anxious and has a hard time communicating his concerns. He will sometimes yell or rip up assignments for seemingly no reason.
- What do we know about Kevin’s triggers?
- What are strategies we learned Kevin was working on to cope?
- How can you support him in a moment of stress?

Case example

- What do we know about Kevin’s triggers?
 - Well we know he can become overwhelmed easily with large assignments.
 - We can ask him to do every other problem on the page, or to write one response at a time – maybe we chunk his assignments or help with prioritizing tasks.
 - Maybe Kevin also gets frustrated more easily because things take longer to do – thinking and motor planning.
 - So we give him extended time or an alternative way to complete the task that accommodates his motor challenges.

Case example

- What are strategies we learned Kevin was working on to cope?
 - We know from talking with his parents that he is working on deep breathing, activity pacing, and learning to communicate his needs.
 - We also know that Kevin struggles with communicating, especially when faced with a challenging task and doesn’t always think about asking for help first.
Case Example

• How can you support him in a moment of stress?
 • First, stay calm – speak in a neutral voice
 • For Kevin, we know that he has a chart to refer to – we know that he needs a verbal cue to look at the chart or he won’t be able to independently choose how he can be helped – so we gently state “Kevin, I can see that you are getting frustrated. Let’s take a look at your chart to help you.”
 • This visual cue can be helpful to allow the child to name their feelings, to take a mental break from whatever they are doing, and to allow them the opportunity to use some of their coping strategies or even ask for help if that is needed.
 • Finally providing feedback/reinforcement for engaging in these can be reassuring and increase the likelihood of them using strategies again.

Emotion regulation sheet

Strategies for feeling CHALLENGED

• STOP Notice your feelings. Calm down.
• Take time/Take a break
• “Back-Back” (refocus)
• Ask for help
 • Change
 • Distract
 • Say it a different way
 • Expand it
• Write it down
• See a picture
• Show me

Circling Back - Summary

• Gather as much information as possible about the child – Neuropsychology evaluations, speech and language evaluations, medical documents, PT and OT evaluations
• These challenges are dynamic, multi-variate, and evolving
• Brain injuries are individual and diverse
• There are some commonalities but each one is unique
• It is important to individualize and fade accommodations as necessary
• Teachers play a key role!
Summary

• It is important to individualize and fade accommodations as necessary.
• As most are aware, the Universal Design for Learning (UDL) provides a framework.
 • Under the engagement guideline you can find options related to supporting self-regulation.
 • [Link](http://udlguidelines.cast.org/engagement/self-regulation)
 • UDL Check point 9.1, 9.2, and 9.3.
• Teachers play a key role!

Resources

• Book about emotion and instructional design: *Engage the Brain: How to Design Learning that Taps into the Power of Emotion* by Allison Posey.
• Book about teaching mindfulness to young children: *Planting Seeds: Practicing Mindfulness with Children* by Thich Nhat Hanh.
• Book about Emotion Regulation tools for kids with ADHD: *Learning to Feel Good and Stay Cool* by Judith M. Glasser, PhD.

Thank you!
Attention Strategies for Educators

ALI ADLER, M.A.

Attention - Definition

The process of selecting the most relevant stimuli while filtering out less relevant information.

Conceptualizing Attention

Bottom-Up
Stimulus Driven

Top-Down
Goal Oriented
Types of Attention

• Selective attention
• Divided attention
• Alternating attention
• Sustained Attention

Selective Attention

The ability to choose one stimuli over another.
Divided Attention

The ability to attend to more than one environmental factor at the same time.

Alternating Attention

The ability to switch your focus from one stimuli or activity to another.

Sustained Attention

The ability to focus on a particular task for a continuous amount of time.
Attention

The basis for all higher level skills and cognition.

Attention post-TBI vs. ADHD

- Different anatomical framework
- Recovery/improvement differences

Attention Difficulties - Manifestation
Deficits in Selective Attention

• Easily distracted
• Difficulty remembering
• Off task and can’t return independently
• Difficulty following rules

Deficits in Divided Attention

• May become easily confused
• May not start a task

Deficits in Alternating Attention

• May complete one task but not switch to another.
• Difficulty with change in schedule/routine.
• May demonstrate difficulty attending to a new task; may stay stuck on the previous task.
• May make off-topic comments.
Deficits in Sustained Attention

- Difficulty attending to task for more than a short period of time
- Difficulty with increased length and complexity of language
- May not complete the assignment
- Appear spacey and forgetful
- Presents with inconsistent performance
- Difficulty following conversation/lecture
- Difficulty working independently

Treatment for Deficits in Attention

- Pharmacological Treatment
- Cognitive Retraining
- Classroom-based Strategies

Strategies

ABC’s of Addressing Attention in the Classroom Setting
Accommodations

- Explicit instruction, direct attention to task
- Reduce distractions
- Clear desk
- Automatization of skill
- Help with organization to provide framework for attention
- Break assignment into manageable parts in accordance with attention span
- Provide copy of notes and directions
- Teach one concept at a time

Accommodations

- Encourage self-talk
- Number steps/tasks
- Use pictures/use bottom-up attention as needed
- Actively engage the student
- Review/overlearning
- Reduce complexity
- Reduce amount of information

Behavioral Interventions

- Provide breaks
- Frequently check for on-task behavior
- Complete FBA and BIP
Consistency

- Predictable routine
- Structure throughout day
- Consistency from all providers

Direct Instruction

Teach “attention”

http://www.understood.org/~media/5c05c29b4adca27b61da1ae94359.pdf

Environmental Cues
Functional Impairment/Functional Solutions

- Make instruction real and meaningful.
- Pair with overlearned skill.
- Make instruction motivating.
- Use Multi-sensory instruction.
- Make the material relevant.
- Use bottom-up attention.

Goals

- Ensure the student understands the task.
- Have the student retell the directions to ensure focused on what needs to be done.
- Ensure attention concerns are documented on the IEP in the form of a goal.

Help

- Teach the student to ask for help.
- You, as the teacher, seek help when needed. If strategies are not working, stop and revise.
Summary

- Implement “A,B,C’s” strategies
- Importance of Data collection
- Provide support when needed
- Role of teacher
Executive Function can be conceptualized as an umbrella term that includes a collection of interrelated functions that are responsible for purposeful, goal-directed, problem-solving behavior.

BRIEF Professional Manual
EF Strategies Caveat

• Minimal research on EF rehabilitation in children.
• Many strategies do not demonstrate scientifically validated effectiveness.
• Strategies covered in this presentation are based on informal clinical work with students with TBI.

Classroom Strategies

In order for our students to learn the strategies, most likely they will require the following (DREAMS):

• Direct Instruction
• Review
• Errorless Learning
• Always be Consistent
• Modeling
• Systematic intervention for activities to promote overlearning

Organization - Definition

To arrange by systematic planning and united effort
Miriam Webster Dictionary.
Organization – School Impact

Process –
• copying homework
• handing in homework
• keeping track of assignments
• organized binder

Content –
• written expression
• oral expression
• Multi-step math computations and word problems
• Sequencing, organizing story content

Organization – Strategies

Need: Task Analysis
How:
Plan Do Review

Graphic organizers, apps such as Inspiration/Kidspiration
Organization - Strategies

Class agenda sheet, advance organizer

Organization - Strategies

Agenda book, phone calendar, organizational apps

Organization - Strategies

Daily check-in

- Homework
- Labs
- Bell Ringers
- Signed forms or letters
- Completed homework
- Returned turn ins
Organization - Strategies

Checklists, rubrics

Structured classroom and concrete organized worksheets

Timers/alerts
Working Memory - Definition

Ability to store and manipulate information in your mind for short-term use

Working Memory - School Impact

Process
- Difficulty listening to lecture and taking notes
- Difficulty listening to instructions/directions and then carrying them out correctly.
- Difficulty with engaging in give and take conversation

Content
- Reading (i.e., recalling information from selection)
- Math (i.e., holding onto the information in a word problem)
- Written expression (i.e., recalling all the parts of writing a paragraph/essay/report)

Working Memory - Strategies

Need: Reduce working memory load

How:
- Provide a copy of notes in advance of the class for the student to following along lecture.
- Provide written directions
- Chunking - Reduce the reading demand when answering questions or sequencing events – stop and review and provide summary sentence
- Provide a checklist and rubric
- Use visualization, verbal rehearsal, melodic intonation, act it out
- Help make associations
Initiation – Definition

The action of beginning something
Oxford Dictionary

Initiation – School Impact

Process
- Fails to get started on morning routine
- Fails to inform teacher when finished a task
- If distracted, has difficulty returning to complete the given task
- Fails to inform teacher that he needs clarification

Content
- Fails to start a task
- Once started on a task, may not complete if gets distracted or confused

Initiation – Strategies

Need: To start a task
How:
- Timer/alarm
Initiation - Strategies

- Visual reminders, schedules
- Verbal / gestural prompt
- Acronym for regular routines
- Monitoring

Problem-solving - Definition

To find a solution to a difficult or complex question or situation

Oxford Dictionary
Problem-solving – School Impact

Process –
Difficulty answering questions such as:
• How do you think you will do on the test?
• What was the hardest part of the assignment?
• What strategies will help you complete this assignment?

Content –
• Checking work for accuracy
• Prioritizing assignments
• Figuring out what to do when don’t understand what to do

Problem-Solving - Strategies

• Requires a lot of modeling and errorless learning
• Plan-Do-Review

Prioritize
Problem-Solving - Strategies

PQRST method
• Preview – Look through topic
• Question – Make up questions
• Read – All material
• Summary – Summarize all info & ideas
• Test - quiz yourself, questions from step 2

Problem-Solving - Strategies

• Work on meta-cognitive questions and checklists
• Discuss: what are our choices, which is a better choice, why
• Discuss: what do you we need to do, what should we do first, why

Summary

• Have direct goals and accommodations
• Provide direct instruction and then work on fading out.
• Allocate time in the day for direct instruction and review of strategies
• Provide time to directly address remediation and identify what team players are responsible.
• As the content load increases in complexity, reduce the executive function demand
My student has a Traumatic Brain Injury

What do I need to do?

This educational segment was developed and presented by professionals at the Kennedy Krieger Institute and the Brain Injury Association of Maryland for the Maryland State Department of Education.

Return to School Following a Moderate/Severe Traumatic Brain Injury

This module will describe the role of a teacher and the steps needed to be done to initiate services for a student with a traumatic brain injury.
To understand more about neuro-anatomy of the brain, please take time to review the first four modules in this program:

- **Traumatic Brain Injury: Basic Neuroanatomy**
- **Brain Injury 101**
- **Outcomes after Brain Injury: What to expect**
- **mTBI: Common Myths and Facts**

What is the first thing I should do?

- Panic: Do nothing. It’s not my job to get involved.

A student’s parent just told me that he has sustained a traumatic brain injury!

What is the first thing I should do?

- Panic
- Do nothing. It’s not my job to get involved.
- Contact the Student Services Team at my school.

If your student had a TBI, there are many things you can do to help!

- Make sure that your **Student Services Team** knows about the injury.
- Help gather documentation and assignments for your student.
Do nothing

It may be overwhelming to think about, but students with traumatic brain injury need to be evaluated in the school... and quickly!

It's important to expedite referrals and evaluations for students with TBI once they often need services and their needs can change very quickly!

That's right! Contacting the Student Services Team is the right thing to do. They will be able to access medical records and determine whether additional information is needed.

The Student Services Team

Staff may include:
- Administrator
- Social Worker
- 504 Plan Chair
- School Nurse
- Teacher

The Student Services Team should obtain a Release of Information signed by the parent to request medical records from the hospital or rehabilitation facilities where the student was admitted.
What Reports Might Be Helpful?

- Medical
- Neuropsychological
- Educational
- Speech and Language
- Occupational Therapy
- Physical Therapy
- Hearing
- Vision
- Assistive Technology

What is a medical evaluation?

A medical evaluation can provide me with information about the type of injury of the student. It can also provide medical concerns, restrictions and needs of the student that will help in planning his return to school.

What will a medical evaluation tell me for a student with a brain injury?

Possible areas of concern:
- seizures
- stamina/Home and Hospital
- diet
- medication management
- vision/hearing
- respiratory management
- physical/sports restriction
What is a neuropsychological evaluation?

A neuropsychological evaluation is an in-depth assessment of skills and abilities that are linked to brain function. The evaluation will measure the following areas of brain function:

- Adaptive skills
- Attention and memory
- Social-emotional functioning
- Problem-solving
- Language
- Processing
- Intellectual skills
- Visual-spatial skills

What is an educational evaluation?

An educational evaluation assesses areas of current academic functioning including reading, math, written language and listening comprehension skills.
What will an educational evaluation tell me for a student with a brain injury?

• Current level of functioning which may just reflect prior learning knowledge, not new learning ability
• Variability of current strengths and areas of weaknesses
• Look for patterns
• What is cognitive impact vs. actual knowledge

What is a speech/language evaluation?

A speech language evaluation for a student with TBI should address the following areas:

• Receptive Language
• Expressive Language
• Pragmatic Language
• Swallowing Skills
• Breath support, speech
• Communication

What will a speech/language evaluation tell me for a student with TBI?

• How does the student understand language?
• How can the student communicate (verbally, ACC, rate, speedy)?
• How does speech and language impact social language skills?
• How do oral motor skills impact eating/drinking?
Occupational Therapy

What is an occupational therapy assessment?

An occupational therapy evaluation for a student with a brain injury should assess the following areas:

- Fine Motor Skills
- Visual Perceptual Skills
- Visual-Motor Skills
- Activities of Daily Living Skills

What will an occupational therapy evaluation tell me for a student with a brain injury?

- What level of writing can the student do and what may impact written expression?
- What level of fine motor functioning and what may impact it?
- What is the level of independence for ADLs?
- Does the student require equipment?
- Does the material need to be modified or presented in a certain way visually?

Physical Therapy

What is a physical therapy evaluation?

A physical therapy evaluation for a student with a brain injury should assess the following areas:

- Endurance
- Speed
- Balance
- Coordination
- Mobility
- Motor Planning
- Equipment
What will a physical therapy evaluation tell me for a student with TBI?

- What type of mobility does the student access?
- What is the student’s physical stamina?
- What degree of assistance or supervision is required for mobility?
- Are there physical restrictions for recess and PE?
- How does cognition impact mobility?

What is an audiological evaluation?

An audiological assessment can provide me with information regarding the student’s hearing. An audiologist will use a variety of tools to measure the peripheral and central auditory systems.

What will an audiological evaluation tell me for a student with brain injury?

Possible areas of concern:

- Tinnitus (ringing in the ear)
- Vestibular issues (dizziness and balance)
- Sound sensitivity
- Auditory processing disorder
- Hearing loss
A neuro-ophthalmology evaluation assesses the visual system as it relates to the nervous system. This includes vision disorders due to injury to the brain, the optic nerves, or the visual pathways which transmit visual signals from the eyes to the brain.

A functional vision assessment assesses how the student uses his vision in functional settings, such as the classroom and will tell me how to present information to the student.

Diagnoses that may present following TBI:
• Cortical visual impairment
• Esotropia
• Diplopia
• Convergence insufficiency
• Visual Field cut

What will a functional vision assessment tell me for a student with a brain injury?
• How does the student’s vision impact education?
• What material and instructional adaptations are needed?
• How does the eye/cortical condition translate to functional tasks?
• What environmental adaptations may be needed?
What is an assistive technology evaluation?

An assistive technology evaluation is completed by an assistive technologist or sometimes by a team of specialists to determine what technology will help improve the student’s performance, participation, and independence.

What will an AT assessment tell me for someone following brain injury?

What technology can help my student with a TBI? Technology can compensate for deficits in the following areas:

- Motor
- Cognitive
- Communication

Key take away points to remember as we embark on the special education time-line.

- Provide frequent monitoring of goals and ensure progress is being made.
- Initially, have quarterly team meetings to ensure services are appropriate.
- Keep in mind process, not only content, and develop IEP goals as needed in these areas.
- Keep in mind behaviors that may interfere with learning, even if not aggressive (attention, impulse control, following directions, decreased frustration tolerance, etc.) and develop goals in these areas.
Memory Strategies for Educators
Danielle Ploetz, PhD

Outline

• Defining memory and brief neuroanatomy primer
• Strategies to consider for helping your students

Defining Memory

• Memory is the most common and persistent deficit following acquired brain injuries
• Memory is a complex process
 • It can impact past and future recall
 • Disruption to ANY of these can lead to memory deficits
Defining Memory

- Short-term memory (working memory)
- Long-term memory

- Explicit (declarative)
 - Episodic
 - Semantic
- Implicit (nondeclarative)
 - Procedural
 - Priming

Neuroanatomy of memory

Frontal Lobes
- Short-term memory (working memory) and Retrieval

Subcortical region (e.g., hippocampus, amygdala, striatum)
- Learning, declarative memory (facts, events)

Cerebellum, basal ganglia (also subcortical)
- Procedural memory for motor learning

Memory Problems

- A memory deficit might look like trouble remembering or it might look like......
 - She frequently misses appointments-avoidance, irresponsibility.
 - He says he’ll do something but doesn’t get around to it.
 - She talks about the same thing or asks the same question over and over-annoying perseveration.
 - He invents plausible sounding answers so you won’t know he doesn’t remember.

(Capuco & Freeman-Woodpert)
Translating Research to Practice

Considerations

- Severity of impairment
- What needs to be remembered? Appointment? Facts?
- Preferences, meaning
- Trial and error from clinician

Strategies

- Orientation/External Aides
- Errorless learning
- Spaced Retrieval
- Chaining
- Association/Keyword retrieval
- Mnemonics
Orientation and Memory

- External Aides
- Memory Notebook with Calendar
- Pictures of Staff
- Memory Log/Individualized Daily Schedule
- Behavior reward chart/tokens earned
- Tablets & phones

Memory Log/Daily Schedule

<table>
<thead>
<tr>
<th>Time</th>
<th>Staff/Teacher</th>
<th>Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8:30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9:00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9:30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Daily Tasks/Homework

<table>
<thead>
<tr>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Errorless Learning

- Cue freely as needed
- Frequent repetition
- Present information in actual context/setting
- Avoid quizzing
- Do not allow guessing or trial-and-error

Errorless Learning

- Most basic: make statement & ask student to recall statement without delay

 - My name is Dr. D. What is my name? Or Did I say my name was Sally or Dr. D?
 - You live in Baltimore. Where do you live?
 - This place is called STP. What is it called?

Severely Impaired Memory

Orientation
1. Your name is _____________________________. What is your name?
2. You are _______ years old. How old are you?
3. How much money have you _______? When was your birthday?
4. Your phone number is _____________________________. What is your phone number?

Place
1. You are in Baltimore. Which city are we in?
2. You are at STP right now. Where are you?

Events
1. The date of your injury was _______ . When was your injury?
2. You have _______. What kind of injury do you have?
Errorless Learning

• More complex: simple command with conditional clause attached, indicating when command should be executed

 • When you pick up the phone, say, "Hello, my name is Kevin." What should you say when you pick up the phone?

 • Before you sit down, feel for the back of the chair. What should you do before you sit down?

Spaced Retrieval

• Identical to errorless learning except student is asked to retain information for progressively longer periods of time

 • Give name and ask to repeat after increasing intervals
 • E.g., 15 sec, 30 sec, 45 sec
 • Duration only increases based on performance and until each prior level is mastered

Chaining

• Used to retrain students to perform sequence of steps by procedural memory

 • Each item learned automatically, as an isolated unit

 • Then mechanically linked with items before and after

 • Completion of 1 step in sequence serves to reinforce step that came before it
Chaining

- Verbal or visual; helpful to also incorporate motor movements
- Forward
 - Teacher provides 1st step; guides student
 - Once able, 2nd step introduced; student guided to perform both together
 - Once successful, 3rd step introduced; student guided to perform all 3 together
 - Continues until all steps are complete
- Backward
 - Identical, cueing for steps reversed last to first
 - Vanishing cues
 - process for teaching new information in which prompts are provided and then gradually removed

Association

- Paired Associate (PA) learning
 - 2 items (a Stimulus and Response item) paired as stimuli (e.g., CALENDAR-SHOE)
 - When items pairs are committed to memory, presentation of first word (the stimulus word) should evoke the second word (the response word)
 - Presenting CALENDAR should elicit a response of SHOE

Keyword Method

- Paired-associate learning
 - mediating word ("key" word) is used to associate two items
 - Often used to learn foreign language
 - English word that sounds like some part of foreign
 - Spanish carta sounds like the English cart
 - cart is the keyword
 - link keyword with English meaning of foreign word by forming an interactive image
 - carta means letter, so visualize a letter inside a cart
Mnemonics

- Acronym - list of initial letters of critical words
 - representing the Great Lakes as HOMES
- Narrative Story Method
 - create story that contains all words in a to-be-remembered list
- Rhymes and Alliterations
- Chunking (phone numbers are great examples of chunking)
- Method of Loci

Mnemonics

- Imagery Mnemonic: The Method of Loci
 - Ascertain student recalls a familiar place
 - house
 - Think of different landmarks
 - bathroom, kitchen, hall
 - Train students to "go around" landmarks in particular order
 - Best for simple words lists, like vocab
 - Imagine items in certain places of house
Circling Back - Summary

• Gather as much information as possible about the child – Neuropsychology evaluations, speech and language evaluations, medical documents, PT and OT evaluations
• These challenges are dynamic, multi-variate, and evolving
• Brain injuries are individual and diverse
 • There are some commonalities but each one is unique
• It is important to individualize and fade accommodations as necessary

Summary

• It is important to individualize and fade accommodations as necessary
• As most are aware, the Universal Design for Learning (UDL) provides a framework
 • Under the engagement guideline you can find options related to supporting different areas of functioning
 • http://udlguidelines.cast.org/
• Teachers play a key role!

APPS to consider

• To name a few...
 • Evernote
 • Pictello
 • iProcrastinate
 • InClass
 • Index Card
 • Google Calendar
 • Flashcards Deluxe
Traumatic Brain Injury

The Silent Epidemic

According to the Individuals with Disabilities Education Act (IDEA):

A traumatic brain injury is “an acquired injury to the brain caused by an external physical force, resulting in total or partial functional disability or psychosocial impairment, or both, that adversely affects a child's educational performance.” The definition continues to specify, “Traumatic brain injury applies to open or closed head injuries resulting in impairments in one or more areas, such as cognition; language; memory; attention; reasoning; abstract thinking; judgment; problem-solving; sensory, perceptual, and motor abilities; psycho-social behavior; physical functions; information processing; and speech. The term does not apply to brain injuries that are congenital or degenerative, or to brain injuries induced by birth trauma.”

Causes of TBI

The Centers for Disease Control and Prevention (CDC) identified the following leading causes of TBI in children and adolescents ages 0 to 14:

- Falls (50.2%)
- Struck by/against events (24.8%)
- Motor vehicle accidents (6.8%)
- Assault (2.9%)
- Unknown/other (15.3%)
In 2014 alone, the CDC estimated over 837,000 TBIs in children in the United States resulting in:

- over 812,000 emergency department (ED) visits
- over 23,000 hospitalizations
- and 2,529 deaths

The Silent Epidemic: TBI

- Most common cause of death and disability in children and adults up to age 45
- Occurs every 15 seconds
- Approximately 5 million Americans suffer some form of TBI disability
- 1 out of 500 children and adolescents will survive a TBI that require hospitalization

Though it is considered a low incidence disability, TBI is its own category under the federal law that ensures appropriate services for students with disabilities.

In 2015-16 the United States Department of Education National Center for Education Statistics, reported approximately 27,000 students receiving services, nationwide, with the identification of TBI.
In a Journal of Learning Disabilities article from 1991, Segalowitz and Brown found: "The hospital-reported incidence of mild head injury among children indicates a prevalence of 2% to 3% in high-school-aged adolescents (14 to 18 years). Yet, our survey of 616 high school adolescents suggests that light and mild head injury (not necessarily leading to hospital admission) is almost 10 times this level. Despite the common notion that such injury is generally benign, we found significant relationships in our sample between reported head injury and hyperactivity, stuttering, mixed handedness, and dislike of mathematics."

Traumatic Brain Injury Incidence in Maryland School Aged Individuals

In 2014 alone there were 367 hospitalizations in the state of Maryland where the patient was between birth and 18 years of age and the primary diagnosis was traumatic brain injury. This does not include individuals seen at their primary care physician’s office, walk in medical care centers, or who were seen but not admitted to the hospital.

Maryland School Data

According to the Maryland State Department of Education (MSDE) there were 221 students state wide receiving special education services with the identification code of TBI.

- 215 in the local education agencies.
- 6 students with the disability code of TBI at the Maryland School for the Blind.
Traumatic Brain Injury in Maryland Schools

In Maryland there were 108,495 students receiving special education services through an Individualized Education Plan as of October 1, 2017.

Of these only 221 students are identified as having a disability of Traumatic Brain Injury.

The Numbers Don’t Add Up

• The CDC estimates brain injury prevalence at 10%
• There is approximately 1.3 million school aged kids in Maryland
• That means 130,000 kids with brain injuries.
• If 5% suffer the onset of a disability that still equates to 6,500 individuals with a disability as the result of a brain injury!
• WE ONLY SERVE 221 STATEWIDE!!!

How does this impact me as a professional in the school?

• Even though a student with a brain injury may exhibit behaviors and characteristics that mirror other disabilities, it is still essential that they are identified properly.
• Proper identification leads to more effective interventions and services that are appropriate.
• Many times TBI ends up being misidentified as emotional disturbance.
What Can Be Done?

• Communication, Communication, Communication!!!

• Collaboration!

• The family and the student should be an integral part of the team.

Best Practices...

Brain injury should be explored any time there is a concern with a student. This includes, but is not limited to:

• Screening meetings
• Child find meetings
• "Kid Talk" meetings
• Individualized Education Plan (IEP) meetings
• 504 Plan meetings
• Functional Behavioral Assessment (FBA) and Behavior Intervention Plan (BIP) meetings
• Parent/Teacher conferences
• During vision and hearing screenings

How to ask parents about history of brain injury

• Has your child ever had a concussion?
• Has your child ever hit their head and lost consciousness, even if for only a short time?
• Has your child ever received medical attention as a result of hitting their head?
• Has your child ever hit their head and had a headache that lasted more than a couple hours?
• Has your child ever hit their head and had difficulty with thinking, emotions, or behavior, even if only for a little while?
Things to remember

- TBI is under diagnosed and under reported, especially in schools.
- Academic, behavioral, and emotional difficulties are all common consequences of a TBI.
- All TBIs do not result in loss of consciousness.
- A concussion is a brain injury!

More things to remember

- There are simple screening tools that can be used such as the HELPS brain injury screening tool. https://www.nashia.org/pdf/topics/pa-helps-screening-tool.pdf
- The impact of brain injury may not become evident for months or sometimes even years after the injury, this is especially true in the developing brain of a child.
- If student with brain injuries are not properly identified they most likely will not be served appropriately, however if served appropriately then most likely outcomes will improve.

Still more things to remember

- It is likely that there are students that are not being served appropriately because they have not been properly identified as having a TBI.
- Educate parents and other professionals about TBI and its’ frequency.
- Parents/guardians may be hesitant to report a TBI or may not see a correlation between a past TBI and current school difficulties.
- Ask about possible history of TBI in children.
TBI is an Epidemic!!!

TBI is present in 85% of traumatically injured children, either alone or with other injuries.1

Carli P. Orliquant G (February 2004)

Sources

- Maryland Special Education/Early Intervention Census Data and Related Tables (October 1, 2017). Maryland Department of Education. Baltimore, MD. http://www.marylandpublicschools.org/about/Documents/DCAA/SSP/20172018Student/
Objectives:

• Define transition and the different types of transition that a student with a brain injury may undergo.
• Discuss why transition is different for a student with brain injury than for other students.
• Discuss the importance of transition planning for a student with brain injury.
• Discuss practical strategies and best practices when helping a student with a brain injury transition.

What is transition?

Traditional: noun, the process or a period of changing from one state or condition to another; verb, undergo or cause to undergo a process or period of transition

Education: process of preparing a student to enter a post-school environment; purpose is to facilitate the student’s move from school to post-school activities.
Why is effective transition planning so important for students with brain injuries?

Typically for students with brain injuries, especially those that obtain their injury in high school, the emphasis is on completing their academic graduation requirements.
Why is effective transition planning so important for students with brain injuries?

- According to Hoofian and colleagues, "Adolescents with TBI face unique challenges as they prepare for adulthood. Evidence has shown continuing medical and physical problems as well as vocational and education difficulties for adults with TBI."
- Anderson, Brown, Newitt, and Hoile conducted a follow up study of 124 adult survivors of childhood TBI. They found that injury sequelae persisted into adulthood and negatively affected both educational achievement and employment status.

How is transition different for students with brain injury?

The National Longitudinal Transition Survey reported that:

- 28% of parents of all students with disabilities reported that their transition age children need life skills,
- approximately 40% of parents of students with autism and emotional disturbance felt that their children needed life skills.
- Nearly 80% of parents of students with brain injuries felt their children required life skills training.

The Return to School

Not the same student as prior to their injury.
- There is likely to be some anger
- Frustration
- Wanting to "get back to normal."
- Sense of loss
- Disinhibited!!!
- Dealing with loss
Importance of Early Intervention

Todis, Glang, Bullis, Ettel, and Hood found that those students with brain injuries who were employed at school exit generally had more severe injuries, had an earlier age of injury, and were less likely to have had rehabilitation services, suggesting that they received more school-based employment assistance than those with less severe injuries.

Best Practices for transition planning for students with brain injury ...

• Make the student, and their family, the center of the planning
• Include all disciplines that work with the student including medical professionals that may not be part of the school system
• As the student begins to make the move to their next steps include individuals from whatever comes next in transition planning
• Start the transition planning process as soon as possible

• Keep in mind that the closer to the injury, the greater the chance of denial over limitations
• Allow for the individual transitioning to experience natural consequences
• Incorporate social skills and behavioral supports in planning
Resources

• Involve the Maryland Division of Rehabilitation Services (DORS) in transition planning
• Transition Toolkit for Students with Traumatic Brain Injury; https://www.cbirt.org/
• Model Systems Knowledge Translation Center fact sheet, Returning to School after Traumatic Brain Injury; https://msktc.org/lib/docs/Factsheets/TBI_School_after_TBI.pdf
• Brain Injury Association of Maryland; https://www.biamd.org/

Things to Remember!!!

• Be flexible, plan for change
• Have frequent meetings to discuss changes, progress, etc.
• Involve the student as much as possible and whenever possible
• Take a multi-disciplinary approach
• Build on preinjury strengths
• Be creative!!!

Sources:

Sources: